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Abstract A system-level understanding of any biological process
requires a map of the relationships among the various molecules
involved. Technologies to detect and predict protein interactions
have begun to produce very large maps of protein interactions,
some including most of an organism�s proteins. These maps can
be used to study how proteins work together to form molecular
machines and regulatory pathways. They also provide a frame-
work for constructing predictive models of how information and
energy flow through biological networks. In many respects,
protein interaction maps are an entrée into systems biology.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Systems Biology should give us the tools to model how

genes, gene products, and other molecules work together

to mediate biological processes. Use of such tools, and in-

deed their very development, requires, for each biological

process, lists of the molecules involved and their interconnec-

tions. The genes and proteins predicted from genome se-

quences have provided a long list of parts (genes and gene

products), and new technologies have begun to define lists

of other molecules not directly encoded by the genome that

are present in cells and tissues at particular times. New com-

putational and experimental technologies have begun to pro-

duce enormous datasets representing interactions between

the parts. For the moment, most of the interaction data

comes from technologies to detect physical or functional

interactions between genes and proteins. Here, we will review

some of the sources of these data and consider how the

quantity and quality of the available interaction data may

impact systems-level studies.
2. Protein–protein interactions

The prominent role that protein–protein interactions play in

most biological processes, combined with the fact that we
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know so little about the functions of most proteins, has in-

spired efforts to map interactions on a proteome-wide scale

(e.g., for all of the proteins encoded by a genome) [1]. To date,

most of the interactions that have been detected experimentally

have relied on one of two technologies, the yeast two-hybrid

system [2] and mass spectrometry (MS) identification of pro-

teins that co-affinity purify (co-AP) with a bait protein [3].

The two technologies detect complementary types of interac-

tions. Co-AP/MS identifies the constituents of multi-protein

complexes but does not reveal the individual binary contacts

that make up each complex. Without data on the constituent

binary contacts, the possible paths of energy or information

flow through the complex and its relationship to other cellular

components may not be apparent. Yeast two-hybrid data, on

the other hand, identifies likely binary interactions that may

suggest possible paths through a pathway or complex, but can-

not reveal the constituents of multiprotein complexes. Thus,

both types of data will be important for understanding protein

and pathway function, and ideally both approaches would be

performed on a proteome-wide scale.

Yeast two-hybrid screens aiming to cover entire proteomes,

or at least very large numbers of proteins, have detected thou-

sands of interactions for a few eukaryotic model organisms

(Table 1), bacteria and phage [4,5] and viruses [6]. By contrast,

proteome-wide co-AP/MS screens have been conducted only in

yeast (Table 1), where most of the proteome could be easily

affinity tagged through the use of homologous recombination.

Co-AP/MS data for other organisms is only just beginning to

emerge through the use of high throughput cloning [7] and the

expression of large sets of tagged proteins in tissue culture cells

(e.g. [8,9]). Thus, it is likely that we will begin to see protein

complex data for humans and other metazoans in similar

quantities as the yeast studies have produced.
3. How complete are current protein interaction datasets?

Despite the volumes of interaction data produced, several

independent analyses have shown that the data from the large

two-hybrid and co-AP/MS screens is far from complete.

Various authors have estimated that the roughly 6000 yeast

proteins are connected by 12 000–40 000 interactions [10–12],

yet the high throughput screens have detected only a small

fraction of those numbers (Table 1). Another clue comes from

the lack of overlap among the different datasets for a particular

proteome. For example, in Table 1, the overlap among the

large two-hybrid screens for yeast was only 6 interactions
blished by Elsevier B.V. All rights reserved.
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Table 1
Large protein interaction screens for eukaryotes

Organism (genes) Method Interactionsa Proteins Reference

Yeast (�6000) Yeast two-hybrid 967 1004 [63]
Yeast two-hybrid 4549 3278 [13]
Yeast two-hybrid 420 271 [64,65]
Co-AP/MS 9421 1665 [66]
Co-AP/MS 3878 1578 [67]

Drosophila (�14 000) Yeast two-hybrid 20 405 7048 [49]
Yeast two-hybrid 1814 488 [14]

Worm (�20 000) Yeast two-hybrid 4027 1926 [68]

aFor two-hybrid screens, the approximate number of unique binary interactions is shown. For co-AP/MS screens, the approximate number of binary
interactions that would result if each bait protein contacted every protein that co-purified with it (the ‘‘hub and spoke’’ model) is shown. Data can be
retrieved from one of the databases cited [42–44].
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[13] while the overlap between the screens for Drosophila was a

measly 28, or less than 2% of the smallest data set [14]. The co-

AP/MS data is not much different. For example, when results

from the two large-scale studies are compared, the number of

interactions common to both datasets is less than 9% of the to-

tal in both datasets [15]. Data from the high throughput

screens also fails to overlap significantly with published ‘‘low

throughput’’ studies, which are generally considered to be less

subject to false positives and false negatives. Such analyses

have led some authors to estimate false negative rates as high

as �85% in large yeast two-hybrid screens and 50% in co-AP/

MS screens [16,17]. These results suggest that many more

interactions could be detected by more exhaustive application

of these technologies. In addition, there is a need for improved

or new high throughput technologies to identify interactions

that may be difficult to detect with two-hybrid or co-AP/MS,

such as interactions involving membrane proteins.
4. Physical and functional interactions

Comparison of the data from yeast two-hybrid and co-AP/

MS provides an example of an important distinction between

two types of interaction data: physical interactions (A touches

B) and functional interactions (A functions with B in some bio-

logical process). A functional relationship may or may not cor-

respond to a direct physical interaction. Thus, physical and

functional interactions are two distinct though partially over-

lapping types of interactions and the distinction is likely to

be important for the development of systems-level models of

protein networks and pathways. Yeast two-hybrid is an exper-

imental approach to detect physical interactions. Co-AP/MS

detects group of proteins in stable complexes, implying that

they function together. Another example of a functional but

not necessarily physical interaction is a genetic interaction, in

which the combination of alleles of two different genes has spe-

cific phenotypic consequences. This is often taken to suggest

that the two genes function in the same or parallel pathways

affecting a particular biological process. Thus, a genetic inter-

action is a measured functional interaction that may or may

not correspond to a physical interaction, but that could be use-

fully represented as a connection between the two genes or

gene products. Ongoing large-scale screens in yeast have

mapped thousands of genetic interactions [18]. Combination

of genetic and physical interaction data is a powerful approach

to mapping pathways [18,19].
5. Predicted and experimentally measured interactions

The increasing use of computational approaches to predict

protein interactions has led to additional large datasets (e.g.

[20]) and to another distinction between two types of interac-

tion data: experimentally measured and predicted. Predicted

interactions can also be classified as either physical or func-

tional. Gene expression profiles have been used, for example,

to infer functional interactions among gene products, based

on the assumption that proteins that function together in the

same pathway or complex should be frequently expressed to-

gether; which is supported by data for stable protein com-

plexes [21,22]. Similarly, genes whose coexpression profiles

are conserved through evolution are often functionally related

[23,24], as are genes that are co-conserved from species to spe-

cies [25–27]. The functional links between proteins in each of

these cases may be direct or very general; they may suggest

roles in the same pathways, or in distinct cellular systems that

are concomitant but that have very few direct molecular con-

nections. Genetic interactions have also been predicted based

on physical interactions, gene expression, protein localization,

and other experimental data [28,29]. Numerous methods for

predicting physical protein–protein interactions have also been

developed [22,30–35]. One very powerful approach takes

advantage of the large number of experimentally measured

interactions available for organisms like yeast and Drosophila

to predict interactions in other organisms [36]. Simply put,

the approach predicts that two proteins will interact if their

orthologs were shown to interact; such conserved interactions

have been referred to as interologs [37–39]. This approach has

been used, for example, to predict 70 000 interactions involv-

ing proteins encoded by a third of the human genes [40]. Sev-

eral other studies have begun to effectively integrate genomic

and proteomic data to make increasingly accurate interaction

predictions [33,41]. The further development and use of in sil-

ico approaches to map interactions seems particularly impor-

tant in light of the shortcomings of high throughout

experimental detection systems.
6. Protein interaction maps

The wealth of data from high throughput screening and

other studies has begun to be consolidated into centralized,

standardized databases. Three of the largest public database

repositories for interaction data are BIND, DIP, and IntAct



Fig. 1. Interaction maps today and tomorrow. (A) Typical representation of a protein–protein interaction map. (B) Proteins are usually shown as
nodes (e.g., circles and boxes) and interactions as edges (lines) connecting them. This organizes information so that attributes of both proteins and
interactions are easily accessible, for example, by hypertext links, but fails to capture structural information. However, additional information could
be made easily accessible through pop-up menus by clicking on the edges (like here) or the nodes. (C) and (D) Ideally, a protein interaction map
visualization tool would allow the structures of proteins and interaction interfaces to be expanded and browsed, and would also provide access to
more global interaction attributes (e.g., conditions under which a certain set of interaction can be found, experimental conditions, dissociation
constants, expression levels, etc.). Based on interactions published by Measday et al. [69], Uetz et al. [63], and reviewed in [70].
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[42–44]. These allow researchers online access to browse and

download data in a standardized format [45]. Sets of interac-

tion data can be viewed as graphs or maps in which each

gene/protein is a node and each interaction is a line connecting

two nodes (Fig. 1). The importance of this view has led to use

of the term ‘‘interaction map’’ to refer generically to interac-

tion datasets. The map view provides not only an intuitive

interface for biologists to explore the data, but also a formal

mathematical framework for computational biologists to ex-

plore the properties of interaction networks. However, before

interaction maps can be used to represent biological networks,

their limitations must be considered.

In addition to the problem of false negatives discussed pre-

viously, most interaction maps and particularly those from

high throughput screens have false positives. Estimates of false

positive rates vary widely, in part because of the difficulty in

definitively demonstrating that any particular interaction does

not have a biological function. Because the false positive rates

may be substantial, the maps from high throughput studies

might be usefully regarded as the results from a first pass filter,
which reduces the possible search space for functionally impor-

tant interactions. Thus, the question becomes how to identify

the more likely true positives. Several studies have confirmed

the general principle that interactions detected in multiple

screens and by different techniques or in different species are

more likely to be true positives than those only found once

or twice [17]. Due to the high rates of false negatives in high

throughput screens, however, there has been very little overlap

between different datasets, thus, limiting the opportunities for

such experimental cross-validation. Alternatively, a variety of

confidence scoring systems have been developed that calculate

the likelihood of an interaction being a true positive, based on

various parameters, including attributes of the proteins and the

specific assays, whether the interaction was detected by other

technologies or screens, and network topology [20,46–50].

However, thus far most of these scoring systems are specific

to particular datasets or methodologies, and no universal sys-

tem has yet been effective.

Another limitation of most protein interaction maps is

that each node generally represents some generic version of a
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cellular protein, without regard to the various splice variants

or post-translationally modified forms that may exist. Isoforms

could interact differently from the form that was actually used
in the assay, which in many cases is unclear. This is particu-

larly true for assays that use only one or a small number of

the possible alternative transcripts from each gene. Thus, many
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so-called ‘‘protein’’ interactions maps are actually gene or lo-

cus interaction maps, which tell us only that one or more of

the proteins encoded by one locus is capable of interacting

with one or more of the proteins encoded by another locus.

Nevertheless, such maps have proven to be useful as starting

points for additional studies, particularly if the caveats are

borne in mind.
7. Using the interaction maps for systems biology

A complete systems-level understanding of any biological

process may require more input data than current technologies

can offer. Intuitively, we imagine that we could model a system

best only after knowing all of the molecules involved, their

concentrations, how they fit together, the effect of each individ-

ual part on its neighbors, and dynamic parameters such as how

concentrations, interactions, and mechanics change over time.

But this seems unrealistic given the fact that the high through-

put technologies for measuring many of these parameters are

still on the drawing board, if they exist at all. Do we really need

to know all of the details of a process to be able to develop a

useful systems-wide understanding or to have a predictive

model? Analysis of protein interaction maps has suggested that

even sparse data can be used to derive initial, rudimentary

models of biological networks.

Topological analyses, for example, initially of metabolic

pathways and subsequently of protein interaction maps, began

to reveal some common properties of biological networks

[51,52]. These initial studies suggested the exciting possibility

that cellular networks may be organized according to some

general principles that could be understood without a detailed

knowledge of all the constituent proteins and interactions

[53,54]. Moreover, analysis of network topology can provide

insights into protein and pathway function. For example, pro-

tein networks contain highly connected hub proteins, which

have been shown to correlate with evolutionarily conserved

proteins, and in yeast with proteins encoded by essential genes

[51,55,56]. Thus, a protein�s relative position in a network has

implications for its function and importance. Analysis of

topology also reveals clusters of highly interconnected proteins

that correlate with conserved functional modules (Fig. 2), such

as protein complexes or signaling pathways [57–59]. Thus,

even the currently available noisy protein interaction maps

can be used to explore the hierarchical organization of biolog-

ical networks and to reveal interconnected modules that con-

trol specific biological processes. As these modules are

defined and further elaborated, understanding them and their

higher order organization will increasingly rely on advances

in information technology.
Fig. 3. Visualizing the dynamics of protein interaction and signaling
networks. The pheromone signaling pathway in yeast is a highly
dynamic process that involves numerous protein interactions, phos-
phorylation events, and small-molecule interactions involving ATP
and GTP. Typical textbook (i.e., static) representations like this do not
reflect the dynamics of this process. A more realistic representation is
available through animation, as shown at http://www.bioveo.com/
MAPK/MAPk.htm. Simplified from an animation by Tom Dallman,
by permission of the author.
8. Perspectives: iCell-TV

How can biologists access and integrate the deluge of pro-

teomics data to help them understand biology? While this

information should help drive the generation of hypotheses

and hypothesis-testing research, we may be generating data

faster than we are learning how to use it. Tools for accessing

and analyzing molecular interaction data have just begun to

emerge over the past few years. Several ‘‘visualization’’ tools

and graphing programs, for example, allow users to construct
a map of interactions [60–62]. These programs allow explora-

tion and ad hoc analyses of interaction data but they rarely

incorporate all of the useful available information about the

molecules and interactions they represent (e.g., see Figs. 1

and 2). Moreover, they usually fail to capture the essential dy-

namic properties of biological networks. Animated cartoons,

on the other hand, can provide at least a qualitative represen-

tation of the dynamics of a process (see, for example, Fig. 3).

However, such oversimplification does not capture the details

of the system or facilitate quantitative modeling. In a way,

visualization of molecular networks is where word processing

was in the early 1980s.

To help us model biological processes, and to visualize and

manipulate those models, we need programs to generate more

dynamic and realistic representations of biological events and

structures. We need what might be called ‘‘interactive Cell-

TV’’ to visualize and manipulate models of cellular events

and behavior. Importantly, iCell-TV must operate across sev-

eral scales of time and space to allow biologists to navigate all

available relevant information. Such a system, for example,

might allow users to explore the changes in the molecular

structure resulting from a post-translational modification,

zoom out to witness the subsequent changes in network and

pathway dynamics, and then change time scales to observe

organelle movement or cell behavior. The number and com-

plexity of the experiments that must be done to test hypotheses

http://www.bioveo.com/MAPK/MAPk.htm
http://www.bioveo.com/MAPK/MAPk.htm
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coming from network analyses are likely to be costly and inef-

ficient. The next generation of biological information manage-

ment systems must, therefore, allow us to do biology truly in

silico. For this to be possible, they must enable the develop-

ment and manipulation of quantitative models, which are of-

ten initially based on a qualitative understanding. However,

it is often the case that about the time we understand a system

well enough to be able to model it, it becomes too hard to

understand in a qualitative sense. A system for navigating

qualitative information based on quantitative data would give

users the ability not only to understand the complexity of bio-

logical processes but also to manipulate those processes, to

construct new models, and to test new hypotheses. Zoom in,

change a Kd or a Vmax, then zoom out and watch what happens

to the system. This would be systems biology for the rest of us,

and would open biological inquiry to a vast resource of

creativity.

Acknowledgments: We thank Tom Dallman for permission to use his
pheromone pathway animation.
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